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Abstract-The stress distribution in a scarf joint, with arbitrary angle of scarf, is analyzed as a two
dimensional elasticity problem in plane stress. Both the adherend and the adhesive are assumed to be elastic
and isotropic. The two adherends may have differing moduli of elasticity. Numerical results are given.

INTRODUCTION

With the increasing use of cemented joints in structural components [I, 2], the distribution of
stresses at the adherend-adhesive interface of a scarf joint has become of importance in design,

While cemented joints other than the scarf have received wide attention for both isotropic and
anisotropic materials [3-6] the only paper, known to the author, which specifically aimed at
elucidating the scarf joint problem is that by J. L. Lubkin [7], wherein the author, using an elegant
proof based on the semiinverse method, showed that the stresses were constant along the joint
for all scarf angles provided the adherends had the same elastic properties. He also deduced the
value of the single angle of scarf which would result in a state of homogeneous deformation of
the cement if the elastic constants of the adherends were different.

In this paper we have attempted to give a solution of the problem for adherends having
differing elastic constants.

It is believed that the solution is sufficiently accurate for design purposes provided the scarf
angle is not too small.

FORMULATION OF THE PROBLEM

The scarf joint is shown schematically in Fig. 1. The forces P are assumed to be applied at
some distance from the scarf, and the cement is considered to have a very small thickness t
compared to the length c of the joint.

The problem is to determine the stress distribution in the cement and adjacent adherend
material.

The boundary conditions for the adherends are that the top and bottom surfaces be traction
free, and that the stress resultant equal P on the vertical sides. This is achieved by the use of
eigenfunctions with undetermined constant coefficients.

These constants are determined by imposing two sets of conditions; first, that the stresses at
the adherend-adhesive interfaces satisfy the equations of equilibrium of the adhesive treated as
being very thin, and, second, that the displacements of the adhesive and adherends be compatible
on the same interfaces.

The scarf angle a is arbitrary and plane stress is assumed. The materials of both the adhesive
and adherends are linear-elastic, but the two adherends may have different elastic constants.

STRESS FUNCTION

We use two coordinate systems (r, 9) and (x, y) as shown in Fig. 2.
The stress function

where

cPt = Aor2(cos 29 - I) == -2Aoy 2
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Fig. I. Scarf joint.
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Fig. 2. Coordinates.

and

q,2 = A 1c2 exp ( -~'Yx ){K cos 'Y(~-1)+ 'Y(~-l) sin 'Y(~-1)} (3)c sm a c sm a e sm a C sm a

is biharmonic. (Ao, A .. and K are constants.)
The stress components may be calculated from the relations

(4)

(5)

From equations (2) and (5) it is easily seen that the stress function q,t satisfies the boundary
conditions

(1'y = Txy = 0 at y = 0, e sin a (6)

and yields also

(1'x = -4Ao, A o= -(1'0/4, (1'0 = PIe sin a. (7)

The stress function q,2 (eqn (3» not only satisfies the boundary conditions at y = 0 and
y = e sin a, but gives zero resultant force and couple on any section x = constant, provided 'Y is
taken as one of the roots of the equationS

sin 2'Y + 2'Y = 0 (8)

and K in eqn (3) is taken to be equal to -'Y sin 'Y Icos 'Y.
Equation (8) has complex roots, which occur in conjugate pairs. Choice of only those roots

which have a positive real part ensures the satisfaction of the boundary conditions at large
values of x > O.

The normal and shear stresses, (1'8 and Trfj along the cement line 8 = a, may be obtained by
first calculating (1'x, (1'y and Txy from eqns (5) and then transforming to the (r, 8) system. The result
is

(1'8 = 4A'('Y 2/sin2 a)XI(z, 2a) + (1'0 sin2 a

T,8 = 4A,(y 2/sin2 a)X2(z, 2a) - (1'0 sin a cos a

(9)
(10)

where the functions Xl and X2 are defined in the Appendix and the coordinate z = rIc is
indicated in Fig. 2.

Using Hooke's Law one may also derive expressions for the displacement components in the
x and y directions and from these obtain the radial and tangential components from the formulas

u, = Ux cos 8 + Vy sin 8, V8 = - Ux sin 8 + V y cos (J (11)
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The displacements u, and Ve along 8 = a may be written as follows

_ c 2'Y c ( . 2 I)u'-20sinaAtX4(z,a,II)-20(J'0 sm a- 1+
11

z

+Vsina+Hcosa

_ c 2'Y c.
Ve- 20 sin a A tX3(z, a, II) - 20 (J'oZ sm a cos a

H sin a + V cos a + cRz.
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(12)

(13)

In these equations, a is the shear modulus of the adherend and II is Poisson's ratio. The
constants H, V, and R define the displacements and rotation of the adherend as a rigid body. The
functions X4 and X3 are defined in the Appendix.

Equations (9), (10), (12) and (13) represent the stresses and displacements of the left hand
adherend in Fig. 1. A similar set of equations may be written for the right hand adherend by
replacing AI by Ai, z by z' = 1- z, a by a', II by v', and V, H, and R by V', H' and R'. (J'o, C

and 'Y remain the same for the two adherends.

EQUATIONS OF EQUILIBRIUM FOR ADHESIVE

The two equations of equilibrium for the adhesive are (Fig. 3)

(14)

Since we assume the adhesive to be very thin we may replace the first of the preceding
equations by

«(J'~ - (J'e)/t = -aTr6/CaZ and «(J'e - (J'~)/t =-aTr6'/CaZ'.

Adding these two equations, we get

From the second of (14) we may similarly derive

a(J'./az + a(J'~/az' = o.
The compatibility equation

is automatically satisfied if we assume a2/an2"'" 0 since

~
r.~

c dil

lf~ V n

Fig. 3. Equilibrium ofcement.
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and

Now
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(18)

where Ee and vc are the elastic modulus and Poisson's ratio for the adhesive.
Setting E. = aur/caz eqn (18) gives

Similarly,

U~ = Kau~/caz' + VeU~.

From (19) and (20) we obtain

From eqns (17) and (21) we get

Equations (16) and (22) are the two equations of equilibrium for the adhesive.

EQUATIONS OF COMPATIB ILITY

Approximately, the shear strains on the two surfaces of the adhesive are

and

1r's = -(ur+ u~)/t + av~/caz'.

Using Hooke's Law we get

ur+ u~== -(t/2Ge)(7'rll +T're)+(t/2c)(iJvsliJz + iJv~/iJz')

and also

where Gc is the shear modulus of the adhesive.
Substituting from (19) and (20) into (24), the latter becomes

(19)

(20)

(21)

(22)

(23)

(24)

Vs +Vs' == -(t/2Ec)[(1- v/)(us + u~) - (vcKlc)(iJur/az + au~/az')]. (25)

Reference to eqns (12) and (13) shows that eqns (23) and (25) contain the rigid body terms H,
V, Rz and H', V' and R '(1- z). These terms are eliminated by differentiating (23) once and (25)
twice with respect to z. Equations (23) and (25) then take the form

a2vs Iaz 2+a2V~I az,2 +(t (l - v/)/2Ec )(a 2us laz 2+a2U~/az 12)
- (Vet /2c )(a 3Urlaz 3+ a3U~/aZ'3) == O. (27)

The stress and displacement components given by eqns (9}-(l3) and similar equations for the
right hand adherend are now substituted into eqns (15), (22), (26) and (27). The resulting equations



may be written as follows:
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A IQI(Z, "(, 2a) +A \Qt(ZI, "(, 2a) = 0 (28)

AIQ3(Z,"(, a, v, 1) - A \Q3(Z',"(, a, v', p,)
= 0.250"0 sin a{sin2 a -1/1 + v - p,(sin2 a-Ill + v')} (30)

in which p, =GIG I is the stiffness ratio of the adherends, and the Qi are given in the Appendix.
It should be remarked that the set of eqns (28}-(3l) (and all preceding equations) are presented

in abbreviated form. AI and A \ are complex constants since "( is a complex number. The
complex conjugate of "(, must also be included in the equations, and therefore also the complex
conjugates of AI and AI. Thus, if only a single root of eqn (8) is used, we have four unknown
constants in each equation.

Before proceeding to a description of the method of solution used, we remark that the basic
eqns (28}-(31) are all homogeneous with the exception of eqn (30). If the right hand member
of (30) vanishes we obtain a set of homogeneous equations with the trival solution Al = A ; = o.
This will occur if the elastic constants of the two adherends are identical, i.e.

or when
p, = 1, v = Vi

sin2
a - 1/1 + v = p,(sin2 a - 1/1 + v').

(32)

(33)

Equation (33), with the necessary change in notation, leads to the single value of a for which we
obtain constant adhesive stresses for unequal adherends as pointed out by Lubkin.7

SOLUTION OF EQUATIONS

The method used for solving the equations is point matching. We have generally used the first
5 of the following 10 roots of eqn (8)

"(1.2.3.4.5 = 2.1061 ± i 1.1254, 5J563 ± i 1.5516,
8.5367 ± i 1.7755, 11.6992 ± i 1.9294,
14.5841 ± i2.0469

"(6.7,8.9.10 = 18.0049 ± i2.1419, 21.1534 ± i2.2217,
24.3003 ± i . 2.2906,27.4462 ± i2J51O,
30.5913 ± i2.4050

(34)

so that there are 20 ut'lknown constants in each of the equations. The equations are satisfied at II
points Z = 0, 0.1, ... , I, resulting in a total of 44 equations in 20 unknowns. A linear least squares
procedure is then used to obtain the 20 unknown constants.

The stresses 0"8, 'Tr8, 0"8', 'Tr8' and the average longitudinal stress iiz = (O"z + ii,>/2 are then
calculated. The equation for iiz is given in the Appendix.

NUMERICAL RESULTS AND CONCLUSIONS

Figures 4-8 give the numerical results obtained for the normal and shear stress and Table 1 the
stress ii. along the adhesive, for various scarf angles a varying from 90° to 60° and for several
values of the stiffness ratio p,. We have assumed the Poisson's ratio for both the adherends to
be OJ. Other parameters were arbitrarily chosen taking care only to keep the tIc ratio small for
the adhesive. The following numerical values were used in the calculations:

At = GtlGec =0.1, A2=Gt/Ecc=Ad2.5, A3=vetI2c=0.OOO125

A4 = A3/A2ve2, As = AlIVe, Ve =0.25, j.t = 0.5,0.1,0.01.
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Fig. 4. a = 75' normal stresses.

)l. = E/E'

.751 .750 .749

o,,/tro

.1

Z

I

.8

.6

Jl= .5

.4

.2

.749

Ge'/ ITo

.750

.5

.751

Fig. 5. a = 60' normal stresses.

We remark that the plane strain problem which more nearly approaches the practical case,
may be obtained from the present problem by substituting E /(1- 112) for E and 11/(1 - II) for II
wherever these quantities occur.

Several remarks are in order regarding the probable limitations of the present analysis. While,
intuitively, one would assume that the accuracy of the solution will increase with the number of
roots employed, there are severe practical limitations to the procedure. The higher roots (see
eqns 34) involve exponentials with a very large negative real part and the computed figures
become quite meaningless after about the seventh root. The situation is aggravated for small
scarf angles because the values of the exponentials decrease rapidly within the scarf. For small
scarf angles (of the order of 15°), it might be necessary to use fewer than 5 roots to obtain reliable
figures. However this is not entirely a matter of the scarf angle, but depends, although to a lesser
extent, on other parameters such as relative stiffness of cement and adherends.

Thus far, the author has not found it possible to generate good results using 10 roots and has
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j.l= E IE'

)..1.=.01

-.04 -.03 -.02 -.01 -.01 -.02 -.03 -.04

J.L= E IE'

}l =.01

-.268 -.262

Fig. 6. a =9()0 shear stresses.

Fig. 7. a =75° shear stresses.

z
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listed the higher roots primarily to indicate their relative magnitudes. For 7 roots the results were
mixed. Some of the solutions were obviously unacceptable, while those that converged gave
results virtually identical with those for the 5 root scheme, at least for normal and shear stresses.
Noticeable changes were found only in the axial stress (cTz) in the cement. Some comparative
figures for this are given in Table 1. It is necessary to add, however, that convergence, in the
sense of the diminution of the coefficients Ai with increase of i, was best when 5 roots were used.

From the pattern of normal and shear stress distribution, as seen from Figs. 4 to 8, there are
only a few general conclusions that can be drawn. First, the distribution of stresses are quite
different on the two sides of the cement, one having no similarity to the other. The stresses
fluctuate about the "average stress" (that corresponding to I-L = 1), but in a manner in which no
regular pattern can be discerned.

The computed data show rapid fluctuations in the magnitude of the normal and shear stresses
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).1= E IE'

J-l = .01

J-l = .5

-.434 -.433
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Fig.S.

Table I. Average values of ii,fcro

Scarf
Angle 90° 75° 60°

-.433 -.434

I
0.5

0.1

0.01

0.247 0.2313
1.25 1.16

(1.63)t
1.25 1.17

(1.63)
1.25 1.17

(1.63)

0.188
0.983
(1.31)
0.983
(1.31)
0.938
(1.31)

tFigures in parentheses were ob
tained using 7 roots. Except of j). = I,
other figures represent results with 5
roots.

over the length of the joint. Some of these fluctuations must be discounted, for it is to be
remembered that the stresses are computed using coefficients obtained by a least squares fit, and
while the overall picture of the stress distribution may be accurate enough, local inaccuracies are
to be expected.

Despite the apparent fluctuations, however, an examination of the scale to which the curves
are drawn will show that for all scarf angles the fluctuations from the uniform distribution (for
l-t = 1) are negligibly small. Indeed, we have had to omit showing the normal stresses for the 90°
scarf because the stress distribution did not deviate sufficiently from uniformity to be shown on a
graph. For the other scarf angles the deviations are more pronounced. But it may be noted that in
Fig. 7 which shows apparently large fluctuations, the maximum deviation from the uniform stress
is less than 7%, even though the adherend stiffnesses ratios vary from 0.5 to 0.01. Of course, an
exception to this general statement is the shear stress distribution in the 90° scarf, which is zero
for l-t= 1.

It might seem that in our examples the stiffness of the glue is small compared to that of either
adherend and if this ratio is changed a different stress picture might emerge. As a matter of fact,
many other ratios (and many smaller scarf angles) were tried, without radically altering the near
overall uniformity of the stress distribution. (There were, of course, changes in detail.)
Nevertheless the author considers it possible that there could be a combination of parameters
that would make the distribution very different.
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The difference in elastic constants of the adherends does, however, have a marked effect on
the longitudinal stress uz on the cement as can be seen from Table 1. U, is only the "average"
longitudinal stress so that the maximum stress, adjacent to the stiffer adherend, will be greater.
The longitudinal stress is also almost constant along the adhesive although it might well turn out
to be the critical stress in design.

The numerical data presented here are too limited in scope to justify more general
conclusions. The parameters involved in the problem are many, and the range of parameters will
depend on the type of application contemplated.
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APPENDIX
H = exp (-2')1z cot a)
F,(z, a) = sin {y(2z -I) - a}
F,(z, a) = cos {')I(2z -I) - a}
F,(z, a) = ')I(2z - I) sin {y(2z - I) - a}
F.(z, a) = ')I(2z - I) cos {y(2z -I) - a}
XI(z, 2a) =[F,(z, 2a)(K -I) + F,(z, 2a) + F,(z, O)]H
X2(z, 2a) = [F,(z, 2a)(I- K) +F.(z, 2a)]H
X3(z, a, v) =[F,(z, a)(K - 2v/(I + v»- F.(z, a) + 2(1- v)F,(z, 0) sin a/l + v

+ F,(z, 0) cos a]H
X4(z, a, v) = [F,(z, a)(K - 2v/(I + v)) + F,(z, a) - 2(1- v)F,(z, 0) cos a/I + v

+ F,(z, 0) sin a]H

(AI)
(A2)
(A3)
(A4)
(A5)
(A6)

(A7)

(A8)

(AI9)

(All)

(AB)

(AI5)

(AI4)

(AI2)

(A9)

(AIO)

(AI6)

(AI7)
(AI8)

In the following equations the function F
"

F" F" and F. on the right hand side have the same argument for a as shown on
the left hand side, unless otherwise indicated.

DXl(z, 2a) = [F,(2 - K) - cot aF,(I + K) - cot aF, + F. + F,(z, 0)
+ cot aF,(z, O)]H

DX2(z, 2a) = [cot aF,(K -I) + F,(2 - K) - F, - cot aF.]H

DX3(z, a, v) = [cot aF,(2v/(I + v) - K) + F,(K - 2v/(I + v) -1)+ F,
+ F. cot a - 2(1- v) sin a{F,(z, 0) + cot aF.(z, O)}/I + v
+{F,(z, 0) - cot aF,(z, OJ} cos a]H

DX4(z, a, v) = [F,(l + 2v/(I + v)- K) + cot aF,(K - 2v/l + v) + F. - cot aF,
+ 2(1- v) cos a{FI(z, 0) - cot aF,(z, O)}/(I + v)
+{F,(z, 0) - cot aF,(z, OJ} sin a]H

DDXI(z, 2a) = [2 cot a{F,(K - 2) - F. + F,(z, OJ} + F,{K(COt' a -I) + 2}
+ (cot' a - Ij{F,(z, 0) + F,}]H

DDX3(z, a, v) = [F,Hcot' a -I)(K - 2v/(I + v)) + 2} + 4F,(z, 0) cos a(l- v)/(I + v)
+ 2F,cot a(l-K +2v/1 + v) + 2F,(z, O)(cot' a -I)sina(l- v)/(I + v)
- 2cot aF, - (cot' a -I)F. + cos a{FI(z, O)(cot' a -I)
- 2cot aF,(z, O)}]H

DDX4(z, a, v) = [2 cot aFI(K -1- 2v/(I + v»+ F,(cot' a -I)(K - 2v/(I + v»
+ (cot' a -I)F, - 2cot aF. - 2(1- v) cos a{F,(z, O)(cot' a -I)
+ 2cot aF,(z, OJ}/(I + v) + sin a{F,(z, O)(cot' a-I)
- 2cot aF,(z, O)}]H

DDDX4(z, a, v) = [F,{(3 cot' a -1)(1- K+ 2v/(l + v)) - 2}
+ F, cot a{(3 - cot' a)(K -2v/(I + v))-6} + F, cot a(3 - cot' a)
+ F.(3 cot' a -I) + 2F,(z, 0)(1- v) cos a(3 cot' a -1)/(1 + v)
- 2F,(z, 0)(1- v) cos a cot a (3 - cot' a )/(1 + v)
+{F,(z, 0)(3 cot' a - I) + F,(z, 0) cot a (3 - cot' a)} sin a]H

Q,(Z, ')I, 2a) = y'DX2(z, 2a)
Q,(z, ')I, a, v, T) = ')I'[sin aA.TDDX4(z, a, v)+ DXI(z, 2a)]
Q,(z, ')I, a, v, T) = l[TDX4(z, a, v)+ 2')1A ,DX2(z, 2a)/sin a

- 2')IA ,TDDX3(z, a, v)]
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Q.(z, y, a, v, T) = y'[T sin aDDX3(z, a, v) +2yA,(I - v/)DDXJ(z, 2a)
- 2TyA, sin aDDDX4(z, a, v)]

jjz = COP*4/ cosec a[A,DX4(z, a, v) +A ;/LDX4(z', a, v')] +O.5v,(uo +uo')
- uoCOP[sin' a -1/(1 + v)+ /L(sin' a -1/(1 + v'))]

COP = A,/2v,.A,

K = -y sin y/cos y,

(A20)

(A21)

(A22)

(A23)


